

2014 International Symposium Organized by **Yasushi Miyashita** The University of Tokyo

Vision, Memory, Thought:

How Cognition Emerges from Neural Network

December 6-7, 2014 Ito International Research Center, The University of Tokyo, Tokyo.

Contents

Preface	1
Access to Ito International Research Center, The University of Tokyo	2
Floor Plans of Ito International Research Center	3
Program at a Glance	5
Information for Participants	7
Information for Poster Presenters	8
Poster Hall Layout	9
Program	10
Keynote Lectures	11
Saturday, Dec. 6 Morning	11
Saturday, Dec. 6 Afternoon	12
Sunday, Dec. 7 Morning	13
Video Talk	14
Poster Presentations	15

Preface

For more than 2000 years, human beings have sought to find the most appropriate way to live up to the famous maxim "Know thyself," which is engraved at the Temple of Apollo at Delphi. Today, we believe that science—especially the domain of neuroscience—is at the frontier of human endeavors related to this challenge. Indeed, molecular biology has made significant progress in elucidating the impact of single genes upon behaviors, and neuroimaging has identified the brain areas that are active while we perform various cognitive tasks. There is, however, an even greater challenge: understanding how mind ultimately emerges from the molecular machinery through interactions among neural signals occurring in neural circuits/networks.

I am convening the symposium entitled "Vision, Memory, Thought: how cognition emerges from neural network," held on December 6 and 7, 2014 in Tokyo. This symposium aims to tackle basic questions arising from the old maxim "Know thyself," but with a sharply refined scope. The recent development of multimodal methodologies has enabled us to define neural circuits at several different spatial levels: microscopic (single-axon wiring), mesoscopic (cortical interlaminar connections), and macroscopic (inter-area functional connectivity). The functions of neural circuits at each level should be intensively investigated. However, the focus of this symposium is to discuss how we might link these different levels in order to attain an understanding of mind. To this end, the symposium has brought together the world's leading scientists who are grappling with this challenge through quite different approaches. Their experimental paradigms are mostly based on the visual and memory systems, not simply because these are crucial subsystems of our cognition, but also because studies on these topics are at the cutting edge of current neural-circuit analyses. In addition to oral presentations by these leading researchers, young scientists will also present their new research findings at the poster session, where discussions will hopefully stimulate new ideas that inspire the next breakthroughs.

I am confident that this symposium will contribute to our understanding of how cognition emerges from neural networks, and ultimately to human beings' longstanding effort to know ourselves.

Yasushi Miyashita, Ph.D.

December 6, 2014 Tokyo, Japan

Access to Ito International Research Center, The University of Tokyo

[Access to Tokyo Station]

From Narita International Airport

Narita Terminal 1, 2 Sta. —Narita Express (JR)→ Tokyo Sta. [55-59 mins.]

From Haneda International Airport ullet

Haneda International Terminal Sta. —Tokyo Monorail→ Hamamatsucho Sta. [13-19 mins.] Hamamatsucho Sta. —Yamanote line (JR)→ Tokyo Sta. [6mins.]

[Access to IIRC, Univ. Tokyo]

Tokyo Sta. —Marunouchi Line (Tokyo Metro)→

Hongo-sanchome Sta. (M21) [7 mins.]

Hongo-sanchome Sta. (M21) → IIRC [8 min. walk]

Floor Plans of Ito International Research Center

Building façade

Main hall

B1F

Floor Plans of Ito International Research Center

B2F

Program at a Glance

• Saturday, December 6 (10:30 – 20:00)

[Main Hall]

10:30 - 10:40 Opening remark

Dr. Yasushi Miyashita (The University of Tokyo School of Medicine)

Session 1. Cognition Dynamics and Frontal Cortex (Chair: Dr. Nikos K. Logothetis)

- 10:40 11:40 Keynote lecture 1
 Dr. William T Newsome (Stanford University School of Medicine)
 "A new look at gating: selective integration of sensory signals through network dynamics"
- 11:40 12:40 Keynote lecture 2
 Dr. Keiji Tanaka (RIKEN Brain Science Institute)
 "Functional division among prefrontal areas"

[Foyer/Event Space]

12:40 – 14:00 Poster Lunch Session [Light refreshments will be served]

[Main Hall]

Session 2. System and Network (Chair: Dr. Bill Newsome)

14:00 - 14:10 Video talk

Dr. Edward Moser (Norwegian University of Science and Technology) "Grid cells and the cortical map for space"

- 14:10 15:10 Keynote lecture 3
 Dr. Stanislas Dehaene (Collège de France)
 "How do monkeys and humans represent the abstract structure of sequences"
- 15:10 16:10 Keynote lecture 4
 Dr. Doris Tsao (California Institute of Technology)
 "Mechanisms for object perception"

Program at a Glance

16:10 - 16:20 Coffee Break

16:20 – 17:20 Keynote lecture 5
 Dr. Yasushi Miyashita (The University of Tokyo School of Medicine)
 "Cognitive memory in the primate cortex: global network and local circuit"

[Foyer/Event Space] 17:20 – 18:00 Poster Session

[Foyer/Event Space] 18:00 – 20:00 Reception [Fee: JPY 1,000]

• Sunday, December 7 (9:30 – 12:50)

[Main Hall]

Session 3. Multimodal Approaches (Chair: Dr. Stanislas Dehaene)

9:30 – 10:30	Keynote lecture 6
	Dr. Karl Deisseroth (Stanford University)
	"Optical deconstruction of fully-assembled biological systems"
10:30 – 11:30	Keynote lecture 7
	Dr. Takao Hensch (Harvard University)
	"Balancing plasticity / stability in brain function"
11:30 – 11:40	Coffee Break
11:40 – 12:40	Keynote lecture 8
	Do NEL de 17 Les de Carlo (Marie Diserte Les Childre Districte de Los Contratos de Carlo de

Dr. Nikos K. Logothetis (Max-Planck-Institute for Biological Cybernetics) "The neural orchestration of memory consolidation"

12:40 – 12:50 Closing remark **Dr. Yasushi Miyashita** (The University of Tokyo School of Medicine)

Information for Participants

1. Registration

Registration desk is located at Gallery 1 on B1 Floor in Ito International Research Center.

- Registration Desk Opening Hours: Saturday, December 6. 10:00 – 16:00.
 Sunday, December 7. 9:00 – 11:00.
- On-site registration is available at registration desk.
- Please pick up a name card, receipt for reception party, and program book (including presentation abstract) at registration disk. [Caution] The abstracts are NOT citable for any works.

2. Reception Party

This reception offers the opportunity for promising undergraduate, postgraduate students and post docs to meet with leading researchers in a friendly atmosphere. Participants may have the opportunity to speak with the symposium speakers. We encourage all participants to take advantage of this opportunity.

Date & Time: Saturday, December 6th 18:00 – 20:00.

Venue: Event Space & Foyer on B2 floor

Fee: 1,000JPY. (All non-registered participants for the reception party should pay at the registered disk. Only cash payment (JPY) is accepted.)

3. Cloak

Our cloak is located on the B1 floor in the Ito International Center. Valuables and umbrellas cannot be accepted.

Hours:

Saturday, December 6.	10:00 - 20:30.
Sunday, December 7.	9:00 – 13:30.

4. Drink and Refreshment Service

Drink service will be available for all participants in the Event Space and Foyer during Coffee Break. Light refreshments will be served during Poster Lunch Session on December 6.

Information for Poster Presenters

120cm Poster will be displayed in the Poster Hall. 20cm Poster **Poster Preparation** 20cm Name / Affiliation / Presentation Title Numbe The panel size is shown in the figure on the right. Height: 150cm Width: 120cm Please print out the title of your presentation as well as the presenter's name/s and affiliation in English 150cm and affix this information at the top of the poster Poster 130cm display space. Poster must be prepared in English. **Presentation Schedule** Saturday, December 6 10:00 - 10:30 Poster mounting 12:40 - 14:00 Presentation / Discussion (Lunch and Poster Session) 17:20 - 18:00 **Presentation / Discussion** (Poster Session) Sunday, December 7 12:50 - 13:20Poster removal

- All posters are expected to be displayed for two days (December 6 and 7).
- Please mount your poster in the position indicated on the "Poster Hall Layout" in the next page. Poster numbers are already indicated on display panels.
- Tacks for putting up posters will be placed in a paper cup attached to each poster panel. Please do not use glue or scotch tape.
- Please stand in front of your poster panel during the presentation and discussion period listed above, and respond to participants' Questions.
- Posters remaining after the removal period will be removed by the Secretariat.
- The Organizer and Secretariat will accept no responsibility for any theft, loss or damage of posters.

Poster Hall Layout

Program

Keynote Lectures

(Saturday, Dec. 6, Morning)

Session 1. Cognition Dynamics and Frontal Cortex. (Chair: Dr. Nikos K. Logothetis)

■ Lecture 1

A new look at gating: selective integration of sensory signals through network dynamics

Sunday, December 6. 10:40 – 11:40 am.

Sunday, December 6. 11:40 - 12:40 am.

Dr. William T Newsome Investigator, Howard Hughes Medical Institute and Professor, Department of Neurobiology, Stanford University School of Medicine, USA

Lecture 2 Functional division among prefrontal areas

Dr. Keiji Tanaka

Duputy Director, Head, Cognitive Brain Mapping Laboratory, RIKEN Brain Science Institute, Japan

Keynote Lectures

(Saturday, Dec. 6, Afternoon)

Session 2. System and Network (Chair: Dr. Bill Newsome)

■ Lecture 3

How do monkeys and humans represent the abstract structure of Sequences?

Saturday, December 6. 2:10 - 3:10 pm.

Sunday, December 6. 3:10 - 4:10 pm.

Dr. Stanislas Dehaene Professor, Collège de France and Director, INSERM-CEA Cognitive Neuroimaging unit, NeuroSpin, France

Lecture 4 Mechanisms for object perception

Dr. Doris Tsao Assistant Professor of Biology, California Institute of Technology,

Lecture 5 Cognitive memory in the primate cortex: global network and local circuit

Saturday, December 6. 4:20 - 5:20 pm.

Dr. Yasushi Miyashita Professor, Department of Physiology, The University of Tokyo School of Medicine, Japan

Keynote Lectures

(Sunday, Dec. 7, Morning)

Session 3. Multimodal Approaches (Chair: Dr. Stanislas Dehaene)

Lecture 6 Optical deconstruction of fully-assembled biological systems

Saturday, December 7. 9:30 - 10:30 am.

Dr. Karl Deisseroth

D.H. Chen Professor of Bioengineering and of Psychiatry and Behavioral Sciences, Stanford University, and Howard Hughes Medical Institute, USA

Lecture 7 Balancing plasticity / stability in brain function

Dr. Takao Hensch

Professor, Molecular & Cellular Biology, and Neurology (Children's Hospital), Center for Brain Science, Harvard University

Lecture 8 The neural orchestration of memory consolidation

Saturday, December 7. 11:40 - 12:40 am.

Saturday, December 7. 10:30 - 11:30 am.

Dr. Nikos K. Logothetis Director, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany

Video Talk

(Saturday, Dec. 6, Afternoon)

Grid cells and the cortical map for space

Saturday, December 6. 2:00 - 2:10 pm.

Dr. Edward Moser

Director of Kavli Institute for Systems Neuroscience and Co-Director of Centre for Neural Computation, Norwegian University of Science and Technology (NTNU), Norway

Poster Presentations

Poster No.	Session name	Pages
A.1 – A.12	Non-invasive functional imaging	15 – 17
B.1 – B.12	Executive functions	17 – 19
C.1 – C.10	Primary visual processing	19 – 21
D.1 – D.11	Visual cognition	21 – 23
E.1 – E.12	Learning & memory	23 – 25
F.1 – F.6	Emotion	25 – 26
G.1 – G.13	Functional cellular imaging	26 – 29
H.1 – H.14	Optogenetic & genetic approaches	29 – 32

A. Non-invasive functional imaging

A.1 The left frontal activation selectively modulated by syntactic processing: An fMRI study with a special VOS language

> Shinri Ohta^{1, 2}, Masatoshi Koizumi³, Kuniyoshi L. Sakai^{1, 2} ¹Dept. of Basic Sci., Univ. of Tokyo; ²CREST, JST, ³Dept. of Ling., Tohoku Univ.

A.2 Syntactic abilities in a second language assessed by structural properties of the syntax-related pathways

Kayako Yamamoto^{1, 2}, Kuniyoshi L. Sakai^{1, 2} ¹Dept. of Basic Sci., Grad. Sch. of Arts and Sci., Univ. of Tokyo, Tokyo, Japan; ²CREST, Japan Science and Technology Agency, Tokyo, Japan

 A.3 Searching for the brain region related to the relative pitch recognition Yuichiro Shimizu^{1, 2}, Hiroyuki Miyashita^{1, 2}, Kuniyoshi L. Sakai^{1, 2}
 ¹Department of Basic Science, Graduate school of Arts and Science, The University of Tokyo; ²CREST, Japan Science and Technology Agency

A.4 Dynamics of visual attention in generation process of emergent interpretations for novel metaphors

Asuka Terai¹, Masanori Nakagawa¹, Takashi Kusumi², Yasuharu Koike³, Koji Jimura³ ¹Graduate School of Decision Science and Technology, Tokyo Institute of Technology; ²Graduate School of Education, Kyoto University; ³Precision & Intelligence Laboratory, Tokyo Institute of Technology

A.5 Maturational cerebral hemodynamic changes in the prefronto-parietal regions used in relational reasoning among participants from late childhood to young adulthood

Kiyomi Yatabe¹, Ei-ichi Hoshino², Yasuyo Minagawa³

¹Global Centre for Advanced Research on Logic and Sensibility, Keio University, Japan; ²Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Japan; ³Department of Psychology, Keio University, Japan

A.6 Online decoded neurofeedback of confidence

Aurelio Cortese^{1, 2, 3}, Ai Koizumi⁴, Hakwan Lau^{4, 5}, Kaoru Amano³, Mitsuo Kawato^{1, 2} ¹Nara Institute of Science and Technology; ²ATR Brain Information Communication laboratory Group, Computational Neuroscience Laboratories, DecNef; ³Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology; ⁴Columbia University, Department of Psychology. ⁵UCLA, Department of Psychology

A.7 How is reward of others integrated to make one's own decisions in neural mechanisms?

H. Fukuda^{1, 2}, S. Suzuki1^{3, 4}, N. Ma¹, N. Harasawa¹, K. Ueno⁵, J. L. Gardner⁶, N. Ichinohe⁷, M. Haruno⁸, K. Cheng^{5, 9}, H. Nakahara¹

¹Lab For Int Theor Neurosci, RIKEN BSI; ²Dept of Gen Syst Studies, Univ of Tokyo; ³Div of Humanities & Social Sci, Caltech, CA, USA; ⁴JSPS fellow, Grad School of Letters, Hokkaido Univ; ⁵fMRI Support Unit, RIKEN BSI; ⁶Gardner Res Unit, RIKEN BSI; ⁷Dept of Ultrastructural Res, Natl Inst of Neurosci, NCNP; ⁸Center for Info and Neural Networks, NICT; ⁹Lab for Cognitive Brain Mapping, RIKEN BSI

A.8 The Neural Basis of Changing Social Norms through Persuasion

Yukihito Yomogida¹, Madoka Matsumoto¹, Ryuta Aoki^{1, 2}, Ayaka Sugiurab^{2, 3}, Adam N. Phillips¹, Kenji Matsumoto¹

¹Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan; ²Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan; ³Dept Life Sci, GSAS, Univ of Tokyo, Tokyo, 153-8902, Japan

A.9 Differential functional connectivity networks between subdivisions of the hypothalamus and the orbitofrontal cortex as revealed by high-resolution functional MRI

Satoshi Hirose^{1, 2,} Hiroyuki Wada³, Yoshio Imai³, Toru Machida³, Masaaki Akahane³, Ichiro Shirouzu³, Seiki Konishi^{1, 2}

¹Department of Physiology, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; ²Department of Physiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; ³Department of Radiology, NTT Medical Center Tokyo, 5-9-22 Higashigotanda, Shinagawa-ku, Tokyo 141-8625, Japan

A.10 What are emotions? A comparison of categorical and dimensional models of emotion using multivariate pattern analysis

Jerome Foo¹, Katsuyuki Sakai²

¹Physical and Health Education, University of Tokyo, Japan; ²BSI, Tamagawa University, Japan

A.11 Neural correlates of the automatic representation of a visual stimulus in terms of a background coordinate

Motoaki Uchimura^{1, 2, 3, 4}, Tamami Nakano^{1, 2, 5}, Yusuke Morito⁵, Hiroshi Ando^{5, 6}, Shigeru Kitazawa^{1, 2, 3, 5}

¹Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University; ²Department of Brain Physiology, Graduate School of Medicine, Osaka University; ³Department of Neurophysiology, Graduate School of Medicine Juntendo University; ⁴Japan Society for the Promotion of Science; ⁵Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University; ⁶Multisensory Cognition and Computation Laboratory, National Institute of Information and Communications

A.12 Over-night consolidation of sequential motor skill in terms of accuracy is related to the striatum

Sho K. Sugawara¹, Takahiko Koike¹, Hiroaki Kawamichi², Kai Makita³, Yuki H. Hamano^{1,} ⁴, Haruka K. Takahashi^{1, 4}, Eri Nakagawa¹, Hideaki Yamazaki-Kindaichi^{1, 4}, Norihiro Sadato^{1, 4}

¹National Institute for Physiological Sciences; ²Faculty of Medicine, Gunma University; ³Graduate School of Biomedical & Health Sciences, Hiroshima University; ⁴School of Life Sciences, The Graduate University for Applied Sciences

B. Executive functions

B.1 Fluctuation of spatial representation and the dynamics of decision-making

International Symposium 2014

'Vision, Memory, Thought: how cognition emerges from neural network'

in prefrontal neuronal network

Kei Mochizuki¹, Shintaro Funahashi^{1, 2} ¹Kokoro Research Center, Kyoto University; ²Graduate School of Human and Environmental Studies, Kyoto University

B.2 Single unit activity in the monkey orbitofrontal cortex related to reward value processing during decision-making

Tsuyoshi Setogawa¹, Takashi Mizuhiki^{1, 2}, Fumika Akizawa², Ryosuke Kuboki², Narihisa Matsumoto³, Munetaka Shidara^{1, 2}

¹Faculty of Medicine, University of Tsukuba, Tsukuba, Japan; ²Grad Sch of Comprehensive Human Sci, University of Tsukuba, Tsukuba, Japan; ³Human Tech. Res. Inst., AIST, Tsukuba, Japan

B.3 Anterior insular and orbitofrontal cortex in risky decision making

Hironori Ishii, Yuta Kaizu, Shinya Ohara, Philippe N. Tobler, Ken-Ichiro Tsutsui, Toshio Iijima

Division of Systems Neuroscience, Tohoku University; Laboratory for Social and Neural Systems Research, University of Zurich

B.4 Emergence of abstract knowledge that guides decision making in PFC of rats

Satoshi Terada, Hiroyuki Nakahara, and Shigeyoshi Fujisawa Laboratory for Systems Neurophysiology, and Laboratory for Integrated Theoretical Neuroscience, RIKEN Brain Science Institute, Wako-City, Saitama, Japan

B.5 Functional dissociation of the monkey prefrontal, premotor and posterior parietal cortices by disruptive rTMS during the performance of delayed response task

Shinya Nakamura, Takayuki Hosokawa, Toshio Iijima, Ken-Ichiro Tsutsui Division of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, Japan

B.6 Involvement of frontal cortical areas and basal ganglia in behavior mediated by conditional 'visuo-goal' association

Yoshihisa Nakayama¹, Tomoko Yamagata¹, Nariko Arimura¹, Jun Tanji³, Eiji Hoshi^{1, 2} ¹Tokyo Metropolitan Inst. of Med. Sci., Tokyo, Japan; ²CREST, JST, Tokyo, Japan; ³Tohoku Univ. Brain Sci. Ctr., Sendai, Japan

- B.7 Role of primate dorsomedial prefrontal cells in social reward valuation
 Atsushi Noritake, Masaki Isoda
 Dept. of physiol., Kansai Medical Univ.
- B.8 Neuronal correlates of strategy switching between exploration and exploitation in macaque dorsal premotor cortex
 Satoshi Nishida¹†, Atsushi Fujimoto²†, Tadashi Ogawa³
 ¹Kokoro Research Center, Kyoto University; ²Department of Psychiatry, Graduate School of Medicine, Kyoto University; ³Department of Integrative Brain Science, Graduate

B.9 Role of the primate central thalamus in temporal prediction

Kei Matsuyama, Masaki Tanaka Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan

School of Medicine, Kyoto University; †These authors contributed equally to this work

B.10 The cost paid for the reward enhances the value of the reward Shingo Tanaka, John P O'Doherty, Masamichi Sakagami Tamagawa University, California Institute of Technology

B.11 The ventral cingulate motor area of monkeys is involved in well-timed initiation of action

T. Yamagata¹, L. Tremblay², E. Hoshi^{1, 3}

¹Tokyo Metropolitan Inst. of Med. Sci., Tokyo, Japan; ²Centre de Neuroscience Cognitive, UMR-5229 CNRS 67 boulevard Pinel 69675, Bron, France; ³CREST, JST, Tokyo, Japan

B.12 Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum

Takahiro Ishikawa¹, Saeka Tomatsu², Donna S Hoffman^{3, 4}, Shinji Kakei¹

¹Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; ²National Center of Neurology and Psychiatry, Tokyo, Japan; ³Center for the Neural Basis of Cognition, Univ. of Pittsburgh Sch. of Med., Pittsburgh, PA

C. Primary visual processing

C.1 V1 disparity detector integrates multiple spatial frequency channels
 Mika Baba, Kota S. Sasaki, Izumi Ohzawa
 Grad Sch Frontier Biosciences, Osaka Univ, Osaka, Japan; Center for Information and

Neural Networks

C.2 Degraded Gabor wavelet transformation: a qualitative evaluation of a visual degradation when a fraction of V1 neurons don't function

Daisuke Kato, Kota S. Sasaki, Izumi Ohzawa Graduate School of Frontier Biosciences, Osaka Univ.; Center of Information and Neural Network(CiNet)

C.3 The singularity string: a revised structure of pinwheel in cat orientation columns revealed by functional optical coherence tomography

Manabu Tanifuji¹, Yu Nakamichi¹, Valery A. Kalatsky², Hideyuki Watanabe³, Takayuki Sato¹, Uma Maheswari Rajagopalan¹

¹Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute; ²Department of Electrical and Computer Engineering, University of Houston; ³Department of Medical Physics and Engineering, Division of Health Science, Osaka University Graduate School of Medicine

C.4 Texture selectivity of monkey V4 neurons and their relationship with image statistics

Gouki Okazawa¹, Satohiro Tajima^{2, 3}, Hidehiko Komatsu^{1, 4} ¹National Institute for Physiological Sciences, Japan; ²RIKEN, BSI; ³Japan Society for the Promotion of Science; ⁴SOKENDAI

C.5 Functional connections from GABAergic to pyramidal neurons in layer 2/3 of the mouse visual cortex, in vivo

Mir-Shahram Safari, Tadaharu Tsumoto Laboratoty for cortical circuit plasticity, Brain Science Institute, RIKEN, Japan

C.6 Activity is required not for initial formation but for later reorganization of orientation selectivity in visual cortex

K.M. Hagihara¹, Y. Tagawa², T. Yoshoda¹, T. Murakami¹, K. Ohki¹ ¹Graduate school of medical sciences molecular physiology, Kyushu University, Fukuoka, Japan; ²Department of Biophysics, Kyoto University, Kyoto, Japan

C.7 Subspace mapping in Gabor wavelet domain for Macaque V2 and MT neurons

Kota S. Sasaki^{1, 2}, Mikio Inagaki¹, Hajime Hashimoto¹, Izumi Ohzawa^{1, 2} ¹Graduate School of Frontier Biosciences, Osaka University; ²Center for Information and

Neural Networks (CiNet)

- C.8 Subspace reverse correlation for 3D spectral receptive field in macaque MT Mikio Inagaki, Kota S. Sasaki, Hajime Hashimoto, Izumi Ohzawa Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Center for Information and Neural Networks (CiNet), Osaka, Japan
- C.9 Two mechanisms for three-dimensional motion selectivity in macaque area MT

Takahisa M. Sanada¹, Gregory C. DeAngelis² ¹Division of Sensory and Cognitive Information, National Institute for Physiological

Sciences, Okazaki, Aichi 444-8585, Japan; ²Department of Brain and Cognitive Sciences, Center for Visual Science, University of Rochester, NY 14627

 Can macaque monkey perceive motion in depth by cast shadow? Mizutani S^{1, 2, 3}, Katsuyama N^{1, 3}, Usui N^{1, 3}, Taira M^{1, 3}
 ¹Dept. Cogn. Neurobiol. , ²Dept. Neurol., ³CBIR, Tokyo Med. Dent.Univ.

D. Visual cognition

- D.1 Visual area V4 contributes to both fine and coarse stereopsis by solving the correspondence problem at neural population level Abdolrahmani M, Doi T, Shiozaki HM, Fujita I Grad. School of Frontier Biosciences, Osaka Univ., & Center for Information and Neural Networks, NICT, Osaka, Japan
- D.2 Mechanisms for shaping receptive field in monkey anterior inferior temporal cortex Keitaro Obara^{1, 2}, Kazunori O'hashi¹, Manabu Tanifuji^{1, 2, 3}

¹RIKEN Brain Sci. Inst.; ²Dept. Life Sci. Med. Biosci., Waseda Univ.; ³Dept. Complexity Sci. and Eng., Grad. School of Frontier Sciences, Univ. of Tokyo

D.3 Mild perceptual categorization deficits after lesions of anterior inferior temporal cortex

Narihisa Matsumoto^{1, 2}, Mark A. G. Eldridge², Richard C. Saunders², Barry J. Richmond² ¹AIST; ²NIMH, NIH

D.4 Information about facial identity and expression decreased after face

inversion in face responsive neurons of monkey area TE Y. Sugase-Miyamoto¹, N. Matsumoto¹, K. Kawano² ¹AIST, Ibaraki; ²Kyoto University, Kyoto

D.5 Microcircuit operation for hierarchical coding of object association across inferotemporal areas in macaques

Toshiyuki Hirabayashi, Keita Tamura, Daigo Takeuchi, Masaki Takeda, Kenji W. Koyano, Yasushi Miyashita

Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan

D.6 Self-assessment of conscious vision in monkeys and humans

Akihiko Nikkuni^{1, 2, 3}, Aki Miyamoto¹, Yutaka Komura¹ ¹National Institute of Advanced Industrial Science and Technology, Japan; ²Ibaraki Prefectural University of Health Science, Japan; ³Research Fellow of Japan Society for the Promotion of Science, DC

D.7 Acquiring effective behaviors by secondary reinforcer in blindsight monkeys

Rikako Kato, Norihiro Takakuwa, Abdelhafid Zeghbib, Peter Redgrave, Tadashi Isa Dept Devel Physiol, Nat Inst of Physiol Sci, Okazaki, Japan; Graduate Univ for Advanced Studies, Hayama, Japan; Dept Psychol, Univ of Sheffield, Sheffield, United Kingdom

D.8 Responses of midbrain dopamine neurons to conditioned stimuli presented in the V1 lesion-affected visual field

Norihiro Takakuwa^{1, 2}, Rikako Kato¹, Peter Redgrave³, Tadashi Isa^{1, 2} ¹Dept Dev. Physiol, Nat'l Inst. Physiol. Sci., Okazaki, Japan; ²The Graduate Univ for Advanced Studies, Hayama, Japan; ³Dept Psychol, Univ of Sheffield, Sheffield, United Kingdom

D.9 MST neurons contribute to perceptual constancy of visual motion across saccadic eye movements

Naoko Inaba, Kenji Kawano Department of Integrative Brain Science, Graduate School of Medicine, Research and Educational Unit of Leaders for Integrated Medical System, Kyoto University

D.10 Rule-dependent integration of sensory evidence in area LIP

Hironori Kumano, Yuki Suda, Takanori Uka Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka

University; Department of Neurophysiology, Graduate School of Medicine, Juntendo University

 D.11 Effect of visual information on solidness perception by active touch Katsuyama N^{1, 2}, Tachi E^{1, 2}, Haji T⁴, Usui N^{1, 2}, Yoshizawa H^{1, 3}, Saito A^{1, 3}, Taira M^{1, 2}
 ¹Dept. Cogni. Neurobiol.; ²CBIR; ³Dental Hospital, Tokyo Med. Dent. Univ.; ⁴Tamagawa Univ. Brain Sci. Inst.

E. Learning and memory

E.1 Decoding from ECoG signals reveals the contents of color imagery in macaque inferior temporal and prefrontal cortices

Hisashi Tanigawa¹, Ren Takei², Kei Majima^{3, 4}, Keisuke Kawasaki⁵, Hirohito Sawahata⁶, Kiyoshi Nakahara⁷, Atsuhiko Iijima², Takafumi Suzuki⁸, Yukiyasu Kamitani^{3, 4}, Isao Hasegawa^{2, 5}

¹Cent for Transdiscipl Res, Niigata Univ, Niigata, Japan; ²Grad Sch of Sci & Tech, Niigata Univ, Niigata, Japan; ³ATR, Kyoto, Japan; ⁴Grad Sch of Info Sci, NAIST, Nara, Japan; ⁵Niigata Univ Grad Sch of Med & Dent Sci, Niigata, Japan; ⁶Toyohashi Univ of Tech, Aichi, Japan; ⁷Kochi Univ of Tech, Kochi, Japan; ⁸Natl Inst of Info & Comm Tech, Osaka, Japan

E.2 Spatial patterns of cortical oscillation represent associative memory in the primate medial temporal lobe

Adachi K¹, Kawasaki K², Sawahata H³, Matsuo T⁴, Suzuki T⁵, Majima K⁶, Tanigawa H⁷, Iijima A¹, Kamitani Y⁶, Hasegawa I^{2, 7}, Nakahara K⁸

¹Grad Sch of Sci and Tech, Niigata Univ; ²Niigata Univ Grad Sch of Med and Dent Sci; ³Toyohashi Univ of Tech; ⁴Univ of Tokyo Sch of Med; ⁵CiNet; ⁶ATR; ⁷Cent for Transdisciplinary Res, Niigata Univ; ⁸Res Inst, Kochi Univ of Tech

E.3 Whole-brain network dynamics of recognition memory processes in macaque monkeys: an fMRI study

Kentaro Miyamoto, Takahiro Osada, Yusuke Adachi, Hiroko M Kimura, Rieko Setsuie, Tomomi Watanabe, Yasushi Miyashita

Department of Physiology, University of Tokyo School of Medicine

E.4 Information processing in the thalamic mediodorsal nucleus during spatial working memory performance

Yumiko Watanabe^{1, 2}, Shintaro Funahashi^{2, 3} ¹Human Technology Research Institute, AIST, Tsukuba, Japan; ²Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan; ³Kokoro Research Center, Kyoto University, Kyoto, Japan

E.5 Neural representation of trajectory in the monkey hippocampus Rafael Bretas Vieira, Hisao Nishijo University of Toyama, System Emotional Sciences Lab

E.6 Past outcome monitoring and subsequent behavioral adjustment in the primate lateral habenula and anterior cingulate cortex during a reversal learning task

Takashi Kawai^{1, 2, 3, 5}, Hiroshi Yamada^{3, 4}, Nobuya Sato², Masahiko Takada¹, Masayuki Matsumoto ³

¹Sys Neurosci Sec, PRI, Kyoto Univ, Inuyama, Japan; ²Grad Sch of Humanities, Kwansei Gakuin Univ, Nishinomiya, Japan; ³Grad Sch of Comprehensive Hum Sci, Univ Tsukuba, Tsukuba, Japan; ⁴Div of Biomed Sci, Faculty of Med, Univ Tsukuba, Tsukuba, Japan; ⁵JSPS Research Fellow, Tokyo, Japan

E.7 Coordinated activity between the hippocampus and the prefrontal cortex related to retrieval of learned sequences in rats

Seiya Ishino¹, Susumu Takahashi², Yoshio Sakurai¹

¹Department of Psychology, Kyoto University; ² Laboratory of Neural Circuitry, Doshisha University

E.8 Rule switching affects cross frequency couplings in rat hippocampus

Tomoaki Nakazono¹, Susumu Takahashi², Yoshio Sakurai¹ ¹Department of Psychology, Kyoto University; ²Laboratory of Neural Circuitry, Doshisha University

E.9 Sites for formation and storage of eyeblink memory revealed by reversible expression of metabotropic glutamate receptor 1

Harumi Nakao¹, Yasushi Kishimoto², Kouichi Hashimoto⁴, Kazuo Kitamura³, Miwako Yamasaki⁵, Kazuki Nakao^{1, 6}, Masahiko Watanabe⁵, Masanobu Kano³, Yutaka Kirino², Atsu Aiba¹

¹Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo; ²Laboratory of Neurobiophysics, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University; ³Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo; ⁴Department of Neurophysiology, Graduate School of Biomedical & Health Sciences, Hiroshima

University; ⁵Department of Anatomy, Hokkaido University School of Medicine; ⁶Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology

E.10 Stimulus integration during associative learning is supported by PRh-FrA and IC-FrA circuits

Daisuke Nakayama, Hiroshi Nomura, Zohal Baraki, Kousuke Onoue, Norio Matsuki, Yuji Ikegaya

Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

E.11 Distinct types of hippocampal sharp-wave ripples during reward-expecting behavior

Toshikazu Samura^{1, 2}, Akiko Saiki², Hidenori Aizawa³, Takeshi Aihara², Yoshikazu Isomura², Yutaka Sakai²

¹Dept. Appl. Mol. Biosci., Grad. Sch. Med., Yamaguchi Univ.; ²Brain Sci Inst, Tamagawa Univ.; ³Med. Res. Inst., Tokyo Med. Dent. Univ.

E.12 Induction of Associative Olfactory Memory by Targeted Activation of the Memory Circuits in Drosophila Larvae

Takato Honda^{1, 2}, Chi Yu Lee², Maki Yoshida Kasikawa², Ken Honjo², Katsuo Furukubo-Tokunaga²

¹Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Japan; ²Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan

F. Emotion

F.1 Primate pulvinar neurons are tuned to evolutionary relevant stimuli (snakes)

V.Q. Le, J. Matsumoto, V.Q. Le, T. Ono, H. Nishijo System Emotional Science, Fac. Med., Univ. Toyama, Toyama, Japan

F.2 A comparison between the firing activities of rat basolateral amygdala neurons in a socially interactive situation and in a novel environment
 Tadahiro Katayama, Eiichi Jodo, Satoshi Eifuku
 Department of Systems Neuroscience Fukushima Medical University School of Medicine, Fukushima, Japan

F.3 Htr2a-expressing cells in central amygdala control hierarchy between innate and learned fear

Reiko Kobayakawa, Tomoko Isosaka, Ko Kobayakawa Osaka Bioscience Institute

F.4 Thiazoline-related fear odors induce innate cold-fear state with sleep-like slow oscillation

Tomoko Isosaka, Reiko Kobayakawa, Ko Kobayakawa Osaka Bioscience Institute

F.5 The roles of habenula on aggressive behaviors in zebrafish

Ming-Yi Chou, Ryunosuke Amo, Sok-Keng Tong, Masae Kinoshita, Hitoshi Okamoto RIKEN Brain Science Institute, Laboratory for Developmental Gene Regulation, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan

F.6 Habenulo-raphe serotonergic circuit encodes an aversive expectation value essential for adaptive avoidance

Ryunosuke Amo^{1, 2}, Felipe Fredes¹, Masae Kinoshita¹, Ryo Aoki^{1, 3}, Hidenori Aizawa¹, Masakazu Agetsuma¹, Tazu Aoki¹, Toshiyuki Shiraki¹, Hisaya Kakinuma¹, Masaru Matsuda⁴, Masako Yamazaki¹, Mikako Takahoko¹, Shin-ichi Higashijima⁵, Nobuhiko Miyasaka⁶, Tetsuya Koide⁶, Yoichi Yabuki⁶, Yoshihiro Yoshihara⁶, and Hitoshi Okamoto^{1,2} ¹Lab. for Developmental Gene Regulation, RIKEN Brain Science Inst., Saitama, Japan; ²Dept. of Life Science and Medical Bioscience, Waseda Univ., Tokyo, Japan; ³Dept. of Life Sciences, Graduate School of Arts and Sciences, Univ. of Tokyo, Tokyo, Japan; ⁴Center for Bioscience Research and Education, Utsunomiya Univ., Tochigi, Japan; ⁵National Inst. of Natural Sciences, Okazaki Inst. for Integrative Bioscience, NIPS, Aichi, Japan; ⁶Lab. for Neurobiology of Synapse, RIKEN Brain Science Inst., Saitama, Japan

G. Functional cellular imaging

G.1 Combination of optogenetics and optical imaging to identify unknown cortico-cortical projection patterns in macaque

Yu Nakamichi¹, Mitsuhiro Hashimoto², Naohito Kitamura¹, Kei hagiya¹, Takayuki Sato¹, Manabu Tanifuji¹

¹Laboratory for Integrative Neural Systems, RIKEN Brain Science Institute; ²Nagoya University Graduate School of Medicine, Department of Anatomy and Cell Biology

G.2 Orientation maps in monkey V1 and V4 visualized at the single-neuron resolution: a 2-photon calcium imaging study Koji Ikezoe^{1, 2}, Shinji Nishimoto^{1, 2}, and Ichiro Fujita^{1, 2} ¹Graduate School of Frontier Biosciences, Osaka University, Japan; ²Center for Information and Neural Networks, Osaka University and National Institute of Information and Communications Technology, Japan

G.3 Neuronal basis of resting state functional connectivity investigated with simultaneous wide field imaging of intrinsic and calcium signal

Teppei Matsui, Tomonari Murakami, Kenichi Ohki Department of Molecular Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

G.4 Decoding of visual images from the population activity in mouse primary visual cortex

Takashi Yoshida, Kenichi Ohki

¹Department of molecular physiology, Graduate school of medical sciences, Kyushu University, ²CREST, JST

G.5 Two distinct layer-specific alterations in motor predictive information carried by neuronal ensembles and single neurons during learning of a motor task

Yasuhiro R Tanaka, Yoshito Masamizu, Yasuyo H Tanaka, Masanori Matsuzaki Division of Brain Circuits, National Institute for Basic Biology, Okazaki, Japan

G.6 Reward-timing-dependent bidirectional modulation of cortical microcircuits during optical single-neuron operant conditioning

Riichiro Hira^{1, 2}, Fuki Ohkubo^{1, 2,} Yoshito Masamizu^{1, 2}, Masamichi Ohkura³, Junichi Nakai³, Takashi Okada⁴, and Masanori Matsuzaki^{1, 2}

¹Division of Brain Circuits, National Institute for Basic Biology and the Graduate University of Advanced Studies (Sokendai), Myodaiji, Okazaki 444-8585, Japan; ²Japan Science and Technology Agency, CREST, Saitama, Japan ; ³Brain Science Institute, Saitama University, Saitama, Japan; ⁴Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan

G.7 Subicular activation preceding hippocampal ripples in vitro

Nobuyoshi Matsumoto, Hiroaki Norimoto, Takeyuki Miyawaki, Norio Matsuki, Yuji Ikegaya Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan

G.9 A critical time window for dopamine actions on the structural plasticity of dendritic spines

Sho Yagishita^{1, 2}, Akiko Hayashi-Takagi^{1, 2, 3}, Graham C.R. Ellis-Davies⁴, Hidetoshi Urakubo⁵, Shin Ishii⁵, and Haruo Kasai^{1, 2}

¹Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo; ²CREST; ³PRESTO, Japan Science and Technology Agency; ⁴Department of Neuroscience, Mount Sinai School of Medicine; ⁵Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University

G.10 Microglia induced filopodia formation in immature barrel cortex

Akiko Miyamoto¹, Hiroaki Wake^{1, 3}, Hideji Murakoshi^{2, 3}, Kei Eto1, Junichi Nabekura^{1, 2, 3} ¹Department of Homeostatic Development, National Institute of Physiological Sciences, Okazaki; ²Supportive Center for Brain Research, National Institute of Physiological Sciences, Okazaki; ³Department of Physiology, The Graduate University of Advanced Studies (SOKENDAI), Hayama

G.11 In Vivo visualization of subtle, transient, and local activity of astrocytes using an ultrasensitive calcium indicator

Hiroshi Sekiya¹, Kazunori Kanemaru¹, Ming Xu², Kaname Satoh¹, Nami Kitajima¹, Keitaro Yoshida², Yohei Okubo¹, Takuya Sasaki³, Satoru Moritoh⁴, Hidetoshi Hasuwa⁵, Masaru Mimura², Kazuki Horikawa⁶, Ko Matsui⁷, Takeharu Nagai⁸, Kenji F Tanaka², Masamitsu lino¹

¹Dept Pharmacol, Grad Sch Med, Univ Tokyo; ²Dept Neuropsychiat, Sch Med, Keio Univ; ³Neurobiol, Div Biol Sci, UCSD; ⁴Dept Ophthalmol, Tohoku Univ Grad Sch Med; ⁵Genome info Res Cent, Osaka Univ; ⁶Supp Cent Adv Med Sci, Inst Health Biosci, Univ Tokushima Grad Sch; ⁷Div Interdiscipl Med Sci, Cent Neurosci, Tohoku Univ Grad Sch Med; ⁸Inst Sci Indust Res, Osaka Univ

G.12 Cal-520: a newly-developed fluorescent calcium indicator with high sensitivity suitable for monitoring neuronal activity in vitro and in vivo Atsuya Takeuchi¹, Mayumi Tada¹, Miki Hashizume², Kazuo Kitamura¹, Masanobu Kano¹ ¹Department of Neurophysiology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; ²Department of Biochemistry, Faculty of Medicine, Saitama Medical University, Moroyama-machi Iruma-gun, Saitama, Japan

G.13 Rapid linear decoding of olfactory perception during flight
 Laurent Badel, Kazumi Ohta, Yoshiko Tsuchimoto, Hokto Kazama
 Laboratory for Circuit Mechanisms of Sensory Perception, RIKEN Brain Science
 Institute, Wako, Japan

H. Optogenetic & genetic approaches

H.1 Light stimuli alter the activity status of CREB and CRTC1 in the primary visual cortex of adult marmosets

Yuki Nakagami¹, Akiya Watakabe¹, Hiroshi Takemori², Tetsuo Yamamori¹ ¹Div Brain Biol, Nat Inst Basic Biol, Aichi, Japan; ²Lab Cell Sig & Metab, Nat Inst Biomed Innov, Osaka, Japan

H.2 The top-down circuit for sensory perception in the cerebral cortex of the mouse

Satoshi Manita¹, Takayuki Suzuki¹, Chihiro Homma¹, Takashi Matsumoto¹, Maya Odagawa¹, Kazuyuki Yamada¹, Keisuke Ota ^{1, 7}, Chie Matsubara¹, Ayumu Inutsuka², Masaaki Sato^{1, 3}, Masamichi Ohkura⁴, Akihiro Yamanaka², Yuchio Yanagawa⁵, Junichi Nakai⁴, Yasunori Hayashi^{1, 4}, Matthew E. Larkum⁶, Masanori Murayama¹

¹Brain Science Institute (BSI), RIKEN, Saitama, Japan; ²Dept. of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan ; ³JST, PRESTO, Saitama, Japan; ⁴Brain Science Institute, Saitama University, Saitama, Japan; ⁵Dept. of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan ; ⁶Neurocure Cluster of Excellence, Humboldt University, Berlin, Germany; ⁷JSPS Research Fellow

H.3 Neuronal responses in the basal ganglia evoked by optical stimulation of mice motor cortex

Mitsunori Ozaki^{1, 3}, Hiromi Sano1, 2, Satomi Chiken^{1, 2}, Mitsuhiro Ogura³, Naoyuki Nakao³, Atsushi Nambu^{1, 2}

¹Division of System Neurophysiology, National Institute for Physiological Sciences, Okazaki, Japan; ²Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan; ³Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan

H.4 Systemic delivery of an AAV vector in neonatal macaques results in widespread gene transduction into neurons throughout the brain
 Ken-ichi Inoue¹, Katsuo Kimura^{1, 2}, Ryuji Yasukouchi¹, Naoya Sugawara¹, Yasuhiro

Okuda¹, Maki Fujiwara¹, Masahiko Takada¹ ¹Sys Neurosci Sec, Primate Res Inst, Kyoto Univ, Inuyama, Japan; ²Dept Neurol and Stroke Med, Yokohama City Univ, Yokohama, Japan

H.5 Expressing designer receptors exclusively activated by designer drags on the frontostriatal projection neurons in the primate brain using double viral vector transfection

Mineki Oguchi¹, Miku Okajima², Shingo Tanaka¹, Masashi Koizumi¹, Takefumi Kikusui³, Nobutsune Ichihara³, Shigeki Kato⁴, Kazuto Kobayashi⁴, and Masamichi Sakagami¹ ¹Brain Science Institute, Tamagawa University, Tokyo, Japan; ²Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; ³School of Veterinary Medicine, Azabu University, Kanagawa, Japan; ⁴Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, Japan

H.6 Enhanced functional recovery after spinal cord injury by inhibition of repulsive guidance molecule in macaques

Hiroshi Nakagawa^{1, 2, 3}, Taihei Ninomiya^{1, 3}, Toshihide Yamashita^{2, 3}, Masahiko Takada^{1, 3} ¹Systems Neuroscience Section, Primate Research Institute, Kyoto University; ²Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University; ³JST-CREST

H.7 Organization of multisynaptic inputs to the hippocampus: Dual transsynaptic tracing with rabies virus vector in the rat Shinya Ohara¹, Sho Sato¹, Ken-Ichiro Tsutsui¹, Menno P. Witter², Toshio Iijima^{1*}
¹Division of Systems Neuroscience, Tohoku University, Japan; ²Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Norway

- H.8 Myelin homeostasis dysfunction induces motor learning impairments Hiroaki WAKE¹, Daisuke KATO₁, Yasuyo TANAKA², Yasuhiro TANAKA², Yoshito MASAMIZU², Riichiro, HIRA², Junichi NABEKURA¹, Masanori MATSUZAKI²
 ¹Division of Homeostatic Development, National Institute for Physiological Sciences, NINS; ²Division of Brain Circuits, National Institute for Basic Biology, NINS
- H.9 Genetic dissection of pheromone processing reveals direct roles of the main olfactory system in mouse social behavior
 Tomohiko Matsuo¹, Tatsuya Hattori², Akari Asaba², Naokazu Inoue^{3, 4}, Takefumi Kikusui², Reiko Kobayakawa¹, Ko Kobayakawa^{1, 5}
 ¹Department of Functional Neuroscience, Osaka Bioscience Institute, Osaka 565-0874,

Japan; ²Companion-Animal Research, School of Veterinary Medicine, Azabu University, Kanagawa 229-8501, Japan; ³Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; ⁴Department of Cell Science, Institutes for Biomedical Sciences, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan; ⁵PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan

H.10 Experience-dependent modulation of mouse empathetic behavior

Tetsuya Sakaguchi¹, Kazuki Okamoto¹, Reimi Abe¹, Yuji Ikegaya^{1, 2} ¹Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo; ²Center for Information and Neural Networks, NICT

H.11 Cortical excitatory/inhibitory imbalance in a mouse model for human 15q11-13 duplication

Nobuhiro Nakai^{1, 2, 3}, Yasuhito Watanabe², Yoshinobu Kawamura², Taisuke Miyazaki⁴, Masahiko Watanabe⁴, Masanobu Kano⁵, Kouichi Hashimoto², Toru Takumi^{1, 2, 6} ¹RIKEN BSI, Wako, Japan; ²Hiroshima University, Graduate School of Biomedical Sciences, Hiroshima, Japan; ³Kyoto University, Graduate School of Biostudies, Kyoto, Japan; ⁴Hokkaido University, Graduate School of Medicine, Sapporo, Japan; ⁵University of Tokyo Graduate School of Medicine, Tokyo, Japan; ⁶CREST, JST

H.12 Enhanced synapse remodeling as a common phenotype in mouse models of autism

Shinji Tanaka¹, Masaaki Isshiki¹, Toshihiko Kuriu², Katsuhiko Tabuchi³, Toru Takumi⁴, Shigeo Okabe¹

¹Dept. of Cellular Neurobiology, Grad. Sch. of Medicine, the University of Tokyo; ²Dept. of Neurophysiology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University; ³Dept. of Molecular & Cellular Physiology, Shinshu University School of Medicine; ⁴Lab. for Mental Biology, RIKEN Brain Science Institute

H.13 Three-dimensional reconstruction of ultrathin-sectioned neural tissue by light microscopy and electron microscopy

Hirohide Iwasaki, Shigeo Okabe

Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo

H.14 Spaciotemporal gene expression profiling with efficient brain clearing cocktails and computation

Etsuo A. Susaki^{1,2,3,4,*}, Kazuki Tainaka^{1,3,4},*, Dimitri Perrin²,*, Fumiaki Kishino⁵, Takehiro Tawara⁶, Tomonobu M. Watanabe⁷, Chihiro Yokoyama⁸, Hirotaka Onoe₈, Megumi Eguchi⁹, Shun Yamaguchi^{9,10,} Takaya Abe¹¹, Hiroshi Kiyonari¹¹, Yoshihiro Shimizu¹², Atsushi Miyawaki¹³, Hideo Yokota⁶, Hiroki R. Ueda^{1,2,3,4}

*Equally contributed

¹Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center; ²Laboratory for Systems Biology, RIKEN Center for Developmental Biology; ³Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo; ⁴CREST, Japan Science and Technology Agency; ⁵Faculty of Medicine, The University of Tokyo; ⁶Image Processing Research Team, RIKEN Center for Advanced Photonics; ⁷Laboratory for Comprehensive Bioimaging, RIKEN Quantitative Biology Center;⁸Functional Probe Research Laboratory, RIKEN Center for Molecular Imaging Science; ⁹Division of Morphological Neuroscience, Gifu University Graduate School of Medicine; ¹⁰PREST, Japan Science and Technology Agency; ¹¹Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology; ¹²Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center; ¹³Laboratory for Cell Function

H.15 Suppression of epileptic seizures through the activation of CB1 and CB2 receptors by the endocannabinoid 2-arachidonoyl glycerol

Yuki Sugaya¹, Maya Yamazaki², Kenji Sakimura², Masanobu Kano¹ ¹Dept. Neurophysiol., Grad. Sch. Med., Univ. Tokyo, Tokyo, Japan; ²Dept. Cell. Neurobiol., Brain Res. Inst., Niigata Univ., Niigata, Japan